Thursday, 12 July 2012
Day 22: Unit 9- Waves
Unit 9!
Waves are actually a part of our lives a lot more than people think! Waves in water, microwave waves used in microwaves, radio waves that are used to operate radios, the ultra violet waves my mom wants me protected from the sun, sound waves from Mr. Blake yelling, "Its Physics, Babyyyyyyy" , and x-ray waves used for x-rays are examples of ways Physics is present in our lives. Another way waves are present is through slinkies!!
A slinky, which is the medium (or material the wave is going through) can help to demonstrate how waves work. Wave is a transfer of energy. So in the slinky, when someone moves one end, the ripples show the energy a person exerts on the slinky to get it to move.
The wave has a number of parts. The crest is the top of the wave, the trough is the bottom of the wave, the equilibrium point is the point where the wave would rest without any interferences, and the amplitude is the distance from the equilibrium point to its highest point. The wave also has a wave length (which is the length of the wave), wave speed (which is the speed of the wave), and frequency (which is the number of waves per unit of time). An easy way to measure the wave length is from trough to trough and crest to crest. Wave speed can be solved using the equation Velocity = Frequency x Wave Length and Frequency = Cycle / Second (Hertz).
A slinky causes a transverse wave which is a wave energy that moves perpendicular to the waves motion. When moving the slinky, if you move it at a constant speed, when it bounces back, it becomes inverse by equal. Because the waves cause both constructive (waves that add up to each other as they interfere) and destructive (waves that cancel each other as they interfere), they would make standing waves. Standing waves have nodes (not moving parts) and antinodes (moving parts). In a slinky, if standing waves are created, there has to be at least three nodes (one at both ends and one in the middle) and two antinodes (in between the middle node).
Slinkies aren't only fun to play with, but is also a good example of waves in Physics! :)
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment